МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «ШКОЛА № 155» ГОРОДСКОГО ОКРУГА САМАРА (МБОУ Школа № 155 г.о. Самара)

РАССМОТРЕНО	ПРОВЕРЕНО	УТВЕРЖДАЮ
на заседании методического	Заместитель	Директор
объединения	директора по учебно-	МБОУ Школы № 155
(протокол № 5	воспитательной работе	г.о. Самара
от 16.06.2023)		
Председатель МО	Е.А. Дьяченко	О.А. Михайлова
Е.А. Дьяченко	20.06.2022	26.08.2022

РАБОЧАЯ ПРОГРАММА

ПРЕДМЕТ: Химия (углубленный уровень)

УРОВЕНЬ ОБЩЕГО ОБРАЗОВАНИЯ: среднее общее образование

ПРОГРАММА СОСТАВЛЕНА: Кучкановой Валентиной Владимировной

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа учебного предмета «Химия» соответствует государственному образовательному стандарту и полностью реализует федеральный компонент государственного образовательного стандарта основного среднего образования по химии в 11 классе.

Содержание программы направлено на освоение обучающимися знаний, умений и навыков на профильном уровне. Она включает все темы, предусмотренные федеральным компонентом государственного образовательного стандарта основного общего образования по химии и авторской программой учебного курса. Для реализации Рабочей программы используется учебно-методический комплект, включающий:

УМК «Химия» Углубленный уровень

1. Габриелян «Химия» 11 класс; учебное пособие для общеобразовательных организаций; углуб. Уровень / О. С. Габриелян, И. Г. Остроумов, А. Н. Лёвкин, С. А. Сладков. - М. Просвещение, 2021

2.Габриелян О.С. Методическое пособие к учебнику О. С. Габриелян «Химия 11 класс. Углубленный уровень»/ О.С.Габриелян, И.Г. Остроумов, А.С.Сладков, - М.: Просвещение, 2021

Программа рассчитана на 102 часа в XI классе, из расчета - 3 учебных часа в неделю, из них: для проведения контрольных - 5 часов, практических работ - 6 часов.

Изучение химии на углубленном уровне среднего (полного) общего образования направлено на достижение следующих целей:

освоение знаний о химической составляющей естественно-научной картины мира, важнейших химических понятиях, законах и теориях;

овладение умениями применять полученные знания для объяснения разнообразных химических явлений и свойств веществ, оценки роли химии в развитии современных технологий и получении новых материалов;

развитие познавательных интересов и интеллектуальных способностей в процессе самостоятельного приобретения химических знаний с использованием различных источников информации, в том числе компьютерных;

воспитание убежденности в позитивной роли химии в жизни современного общества, необходимости химически грамотного отношения к своему здоровью и окружающей среде;

применение полученных знаний и умений для безопасного использования веществ и материалов в быту, сельском хозяйстве и на производстве, решения практических задач в повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и окружающей среде.

Воспитательный аспект присутствует на каждом уроке. При реализации рабочей программы используется учебник:

- О.С. Габриелян И. Г. Остроумов, С.А. Сладков «Химия» 10 класс.- М.: Просвещение, 2021.
- О.С. Габриелян И. Г. Остроумов, С.А. Сладков «Химия» 11 класс.- М.: Просвещение, 2021.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА

Личностные результаты:

- ➤ Готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию; готовность и способность осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учетом устойчивых познавательных интересов.
- ▶ Развитое моральное сознание и компетентность в решении моральных проблем на основе личностного выбора, формирование нравственных чувств и нравственного поведения, осознанного и ответственного отношения к собственным поступкам. Осознание значения семьи в жизни человека и общества, принятие ценности семейной жизни, уважительное и заботливое отношение к членам своей семьи.
- ➤ Сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, учитывающего социальное, культурное, языковое, духовное многообразие современного мира.
- Осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению, культуре, языку, вере, гражданской позиции. Готовность и способность вести диалог с другими людьми и достигать в нем взаимопонимания.
- > Сформированность ценности здорового и безопасного образа жизни.
- Сформированность основ экологической культуры, соответствующей современному уровню экологического мышления.

Предметные результаты:

▶ знание (понимание) характерных признаков важнейших химических понятий: вещество, химический элемент, атом, молекула, относительные атомные и молекулярные массы, ион, изотопы, химическая связь (ковалентная полярная и неполярная, ионная, металлическая, водородная), электроотрицательность, аллотропия, валентность, степень окисления, моль, молярная масса, молярный объем, вещества ионного, молекулярного и

немолекулярного строения, растворы, электролиты и неэлектролиты, электролитическая диссоциация, гидролиз, окислитель и восстановитель, окисление и восстановление, электролиз, скорость химической реакции, катализаторы и катализ, обратимость химических реакций, химическое равновесие, смещение равновесия, тепловой эффект реакции, углеродный скелет, функциональная группа, изомерия (структурная и пространственная) и гомология, основные типы (соединения, разложения, замещения, обмена), виды (гидрирования и дегидрирования, гидратации полимеризации и деполимеризации, поликонденсации и изомеризации, некаталитические, гомогенные каталитические И И гетерогенные) и этерификации, (ферментативные, горения, разновидности риформинга) реакций в неорганической и органической химии, полимеры, биологически активные соединения;

- *▶ выявление взаимосвязи химических понятий* для объяснения состава, строения, свойств отдельных химических объектов и явлений;
- ▶ применение основных положений химических теорий: теории строения атома и химической связи, Периодического закона и Периодической системы химических элементов Д. И. Менделеева, теории электролитической диссоциации, протонной теории, теории строения органических соединений, закономерностей химической кинетики — для анализа состава, строения и свойств веществ и протекания химических реакций;
- *умение классифицировать* неорганические и органические вещества по различным основаниям;
- установление взаимосвязей между составом, строением, свойствами, практическим применением и получением важнейших веществ;
- энание основ химической номенклатуры (тривиальной и международной) и умение назвать неорганические и органические соединения по формуле и наоборот;
- ▶ определение: валентности, степени окисления химических элементов, зарядов ионов; видов химических связей в соединениях кристаллических решеток; пространственного строения молекул; типа гидролиза и характера среды водных растворов солей; окислителя и восстановителя; окисления и восстановления; принадлежности веществ к различным классам неорганических и органических соединений; гомологов и разновидностей изомеров; видов химических типов, неорганической и органической химии
- умение характеризовать: s-, p- и d-элементы по их положению в Периодической системе Д.И. Менделеева; общие химические свойства простых веществ − металлов и неметаллов; химические свойства основных классов неорганических и органических соединений в плане общего, особенного и единичного;
- ▶ объяснение: зависимости свойств химических элементов и их соединений от положения элемента в Периодической системе Д.И. Менделеева; природы химической связи (ионной, ковалентной, металлической, водородной); зависимости свойств неорганических и органических веществ от их состава и строения; сущности изученных видов химических реакций:

- электролитической диссоциации, ионного обмена, окислительновосстановительных; влияния различных факторов на скорость химической реакции и на смещение химического равновесия; механизмов протекания реакций между органическими и неорганическими веществами;
- умение: составлять уравнения окислительно-восстановительных реакций с помощью метода электронного баланса; проводить расчеты по химическим формулам и уравнениям; проводить химический эксперимент (лабораторные и практические работы) с соблюдением требований к правилам техники безопасности при работе в химическом кабинете (лаборатории).

Метапредметные результаты

Метапредметные результаты включают освоенные обучающимися межпредметные понятия и универсальные учебные действия (регулятивные, познавательные, коммуникативные).

Регулятивные УУД

Умение самостоятельно определять цели обучения, ставить и формулировать новые задачи в учебе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности. Обучающийся сможет:

- **>** анализировать существующие и планировать будущие образовательные результаты;
- > идентифицировать собственные проблемы и определять главную проблему;
- **>** выдвигать версии решения проблемы, формулировать гипотезы, предвосхищать конечный результат;
- ставить цель деятельности на основе определенной проблемы и существующих возможностей;
- формулировать учебные задачи как шаги достижения поставленной цели деятельности;
- ▶ обосновывать целевые ориентиры и приоритеты ссылками на ценности, указывая и обосновывая логическую последовательность шагов.

Умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач. Обучающийся сможет:

- ▶ определять необходимые действие(я) в соответствии с учебной и познавательной задачей и составлять алгоритм их выполнения;
- ▶ обосновывать и осуществлять выбор наиболее эффективных способов решения учебных и познавательных задач;
- определять/находить, в том числе из предложенных вариантов, условия для выполнения учебной и познавательной задачи;
- **>** выстраивать жизненные планы на краткосрочное будущее (заявлять целевые ориентиры, ставить адекватные им задачи и предлагать действия, указывая и обосновывая логическую последовательность шагов);

- ▶ выбирать из предложенных вариантов и самостоятельно искать средства/ресурсы для решения задачи/достижения цели;
- ➤ составлять план решения проблемы (выполнения проекта, проведения исследования);
- определять потенциальные затруднения при решении учебной и познавательной задачи и находить средства для их устранения;
- описывать свой опыт, оформляя его для передачи другим людям в виде технологии решения практических задач определенного класса;
- **>** планировать и корректировать свою индивидуальную образовательную траекторию.

Умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией. Обучающийся сможет:

- определять совместно с педагогом и сверстниками критерии планируемых результатов и критерии оценки своей учебной деятельности;
- систематизировать (в том числе выбирать приоритетные) критерии планируемых результатов и оценки своей деятельности;
- отбирать инструменты для оценивания своей деятельности, осуществлять самоконтроль своей деятельности в рамках предложенных условий и требований;
- ▶ оценивать свою деятельность, аргументируя причины достижения или отсутствия планируемого результата;
- находить достаточные средства для выполнения учебных действий в изменяющейся ситуации и/или при отсутствии планируемого результата;
- работая по своему плану, вносить коррективы в текущую деятельность на основе анализа изменений ситуации для получения запланированных характеристик продукта/результата;
- устанавливать связь между полученными характеристиками продукта и характеристиками процесса деятельности и по завершении деятельности предлагать изменение характеристик процесса для получения улучшенных характеристик продукта;
- **>** сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно.

Умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения. Обучающийся сможет:

- ▶ определять критерии правильности (корректности) выполнения учебной задачи;
- анализировать и обосновывать применение соответствующего инструментария для выполнения учебной задачи;
- свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся средств, различая результат и способы действий;
- оценивать продукт своей деятельности по заданным и/или самостоятельно определенным критериям в соответствии с целью деятельности;

 обосновывать достижимость цели выбранным способом на основе оценки своих внутренних ресурсов и доступных внешних ресурсов.

Владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной. Обучающийся сможет:

- наблюдать и анализировать собственную учебную и познавательную деятельность и деятельность других обучающихся в процессе взаимопроверки;
- соотносить реальные и планируемые результаты индивидуальной образовательной деятельности и делать выводы;
- > принимать решение в учебной ситуации и нести за него ответственность;
- самостоятельно определять причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха.

Познавательные УУД

Умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное, по аналогии) и делать выводы. Обучающийся сможет:

- ▶ выделять общий признак двух или нескольких предметов или явлений и объяснять их сходство;
- объединять предметы и явления в группы по определенным признакам, сравнивать, классифицировать и обобщать факты и явления;
- **>** выделять явление из общего ряда других явлений;
- ▶ определять обстоятельства, которые предшествовали возникновению связи между явлениями, из этих обстоятельств выделять определяющие, способные быть причиной данного явления, выявлять причины и следствия явлений;
- **с** строить рассуждение от общих закономерностей к частным явлениям и от частных явлений к общим закономерностям;
- строить рассуждение на основе сравнения предметов и явлений, выделяя при этом общие признаки;
- излагать полученную информацию, интерпретируя ее в контексте решаемой задачи;
- самостоятельно указывать на информацию, нуждающуюся в проверке, предлагать и применять способ проверки достоверности информации;
- ▶ объяснять явления, процессы, связи и отношения, выявляемые в ходе познавательной и исследовательской деятельности (приводить объяснение с изменением формы представления; объяснять, детализируя или обобщая; объяснять с заданной точки зрения);
- делать вывод на основе критического анализа разных точек зрения, подтверждать вывод собственной аргументацией или самостоятельно полученными данными.

Умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач. Обучающийся сможет:

▶ обозначать символом и знаком предмет и/или явление;

- ▶ определять логические связи между предметами и/или явлениями, обозначать данные логические связи с помощью знаков в схеме;
- > создавать абстрактный или реальный образ предмета и/или явления;
- > строить модель/схему на основе условий задачи и/или способа ее решения;
- ➤ создавать вербальные, вещественные и информационные модели с выделением существенных характеристик объекта для определения способа решения задачи в соответствии с ситуацией;
- преобразовывать модели с целью выявления общих законов, определяющих данную предметную область;
- переводить сложную по составу (многоаспектную) информацию из графического или формализованного (символьного) представления в текстовое, и наоборот;
- строить схему, алгоритм действия, исправлять или восстанавливать неизвестный ранее алгоритм на основе имеющегося знания об объекте, к которому применяется алгоритм;

Коммуникативные УУД

Умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение. Обучающийся сможет:

- > определять возможные роли в совместной деятельности;
- > играть определенную роль в совместной деятельности;
- речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
- определять свои действия и действия партнера, которые способствовали или препятствовали продуктивной коммуникации;
- ▶ строить позитивные отношения в процессе учебной и познавательной деятельности;
- ➤ корректно и аргументированно отстаивать свою точку зрения, в дискуссии уметь выдвигать контраргументы, перефразировать свою мысль (владение механизмом эквивалентных замен);
- > предлагать альтернативное решение в конфликтной ситуации;
- > выделять общую точку зрения в дискуссии;
- договариваться о правилах и вопросах для обсуждения в соответствии с поставленной перед группой задачей;
- э организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т. д.);
- делать оценочный вывод о достижении цели коммуникации непосредственно после завершения коммуникативного контакта и обосновывать его.

Формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее – ИКТ). Обучающийся сможет:

- ▶ целенаправленно искать и использовать информационные ресурсы, необходимые для решения учебных и практических задач с помощью средств ИКТ;
- ▶ выбирать, строить и использовать адекватную информационную модель для передачи своих мыслей средствами естественных и формальных языков в соответствии с условиями коммуникации;
- **»** выделять информационный аспект задачи, оперировать данными, использовать модель решения задачи.

ОРГАНИЗАЦИЯ И ФОРМЫ КОНТРОЛЯ

Контроль знаний, умений и навыков учащихся осуществляется в следующих формах:

Текущий контроль — в форме устных и письменных опросов, индивидуальных заданий; тематический контроль — в форме практических и контрольных работ, тестов; итоговый контроль — в форме итоговой контрольной работы по курсу неорганической химии.

Критерии оценок за устные и письменные работы (соответствуют государственным стандартам):

- "5" выставляется, если правильно выполнены все задания в полном объеме с соблюдением правил оформления работы. Отсутствуют ошибки в химической терминологии. Задачи решены рациональными способами.
- "4" выставляется при правильном выполнении основного числа заданий, допускаются 1-2 незначительные ошибки.
- "3" выставляется в случае правильного выполнения не менее половины из предложенных заданий. При этом допускаются несколько незначительных ошибок или 1-2 грубые ошибки.
- "2" выставляется, если работа не выполнена (отсутствует) или в случае выполнения менее 1/3 из предложенных заданий при наличии нескольких грубых ошибок.

Незначительными ошибками считаются: ошибки в тривиальных названиях веществ (кроме наиболее распространенных), неточное указание продуктов ОВР при правильном подходе; пропуск коэффициента в обменных реакциях, неправильно указанный катализатор и т.д., т.е. ошибки, которые указывают на незнание частных свойств веществ или возникающие по невнимательности.

Грубыми ошибками считаются такие, которые свидетельствуют о незнании основных законов химии, например: неверное составление формул по валентности; неправильное написание хим. уравнений вследствие незнания свойств данного класса веществ; неправильное составление электронного баланса; незнание номенклатуры веществ и др.

Критерии оценок тестовых заданий:

"5" – выставляется, если правильно выполнено не менее 90% заданий

- "4" выставляется, если правильно выполнено от 70% до 89% заданий
- "3" выставляется, если правильно выполнено от 40% до 69% заданий
- "2" выставляется, если работа не выполнена (отсутствует) или в случае выполнения менее 39% заданий

СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА ОРГАНИЧЕСКАЯ ХИМИЯ. 10 КЛАСС

ТЕМА 1. НАЧАЛЬНЫЕ ПОНЯТИЯ ОРГАНИЧЕСКОЙ ХИМИИ (13 ч).

Предмет органической химии. Органические вещества. Что изучает органическая химия. Краткий очерк развития органической химии. Сравнение неорганических и органических веществ. Способность атомов углерода соединяться в различные цепи. Углеводороды и их производные. Понятие о заместителе.

Теория строения органических соединений А. М. Бутлерова. Понятие валентности. Работы Ф. А. Кекуле. Роль А. М. Бутлерова в создании теории строения органических соединений. Её основные положения.

Причины многообразия органических соединений: образование одинарных, двойных и тройных связей между атомами углерода. Изомерия. Эмпирическая, молекулярная и структурная формулы органических соединений.

Концепция гибридизации атомных орбиталей. Строение атома углерода: *s*- и *p*- орбитали, типы их гибридизации. Образование ковалентных связей. Электронная и электронно-графическая формулы атома углерода.

Классификация органических соединений. Классификация по элементному составу: углеводороды, галоген-, азот- и кислородсодержащие органические соединения.

Классификация по строению углеродного скелета: ациклические и циклические (карбоциклические и гетероциклические) органические вещества.

Классификация углеводородов: предельные (алканы и циклоалканы), непредельные (алкены, алкины, алкадиены), арены.

Классификация органических соединений по наличию функциональных групп (гидроксильная, карбонильная, карбоксильная, нитрогруппа, аминогруппа). Спирты. Альдегиды. Кетоны. Карбоновые кислоты. Нитросоединения. Амины.

Принципы номенклатуры органических соединений. Понятие о химической номенклатуре. Номенклатура тривиальная (историческая) и рациональная.

Международная номенклатура органических соединений — IUPAC. Принципы составления названия органического соединения по номенклатуре IUPAC.

Классификация реакций в органической химии. Понятие о субстрате и

реагенте. Классификация реакций по структурным изменениям вещества: присоединения (в том числе полимеризации, отщепления (элеменирования), замещения и изомеризации.

Понятие о гомо- и гетеролитическом разрывах ковалентной связи, электрофилах и нуклеофилах.

Классификация реакций по типу реакционных частиц: радикальные, электрофильные и нуклеофильные.

Классификация реакций по изменению степеней окисления: окисления и восстановления.

Классификация реакций по частным признакам: галогенирование и дегалогенирование, гидрирование и дегидрирование, гидратации и дегидратации, гидрогалогенирование и дегидрогалогенирование.

Демонстрации. Коллекция органических веществ, материалов и изделий из них. Шаростержневые и объёмные модели (модели Стюарта—Бриглеба) этанола и диэтилового эфира, бутана и изобутана, метана, этилена и ацетилена. Взаимодействие натрия с этанолом; отсутствие взаимодействия с диэтиловым эфиром. Модель отталкивания гибридных орбиталей (демонстрация с помощью воздушных шаров). Демонстрационная таблица «Различные гибридные состояния атома углерода». Образцы органических соединений различных классов. Модели органических соединений с различными функциональными группами. Горение метана или пропан-бутановой смеси из газовой зажигалки. Взрыв смеси метана с хлором. Обесцвечивание бромной воды этиленом. Деполимеризация полиэтилена. Получение этилена дегидратацией этанола.

Лабораторный опыт. Изготовление моделей молекул — представителей различных классов органических соединений.

Практическая работа1. Качественный анализ органических соединений.

ТЕМА 2.ПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ (6 ч)

Алканы. Электронное и пространственное строение молекулы метана. Гомологический ряд алканов и их изомерия. Пространственное строение молекул алканов (в том числе и конформеры). Номенклатура алканов.

Промышленные способы получения алканов: крекинг нефтепродуктов, реакция алкилирования, получение синтетического бензина, нагревание углерода в атмосфере водорода. Лабораторные способы получения алканов: реакция Вюрца, пиролиз солей карбоновых кислот со щелочами, гидролиз карбида алюминия.

Физические свойства алканов. Взаимное влияние атомов в органических молекулах. Положительны и отрицательный индуктивные эффекты. Прогноз реакционной способности алканов. Механизм реакций радикального замещения. Реакции радикального замещения: галогенирование и нитрование. Реакции дегидрирования. Реакции окисления. Другие реакции с разрушением углеродной цепи. Применение алканов на основе свойств.

Циклоалканы. Гомологический ряд и строение циклоакланов. Их номенклатура и изомерия. Понятие о пространственной изомерии. Конформеры циклогексана.

Способы получения циклоалканов: ректификация нефти, каталитическое дегидрирование аренов, внутримолерулярная реакция Вюрца.

Физические и химические свойства циклоаканов (реакции присоединения и замещения). Применение циклоаканов.

Демонстрации. Шаростержневые модели молекул алканов для иллюстрации свободного вращения вокруг связи С—С, а также заслонённой и заторможенной конформаций этана. Получение метана из ацетата натрия и гидроксида натрия. Горение метана, пропан- бутановой смеси, парафина в условиях избытка и недостатка кислорода. Взрыв смеси метана с воздухом. Отношение метана, пропан-бутановой смеси, бензина к бромной водеи раствору КМпО4.

Лабораторные опыты. Изготовление парафинированной бумаги, испытание её свойств (отношение к воде и жиру). Обнаружение воды, сажи, углекислого газа в продуктах горения свечи.

ТЕМА 3. НЕПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ (14 ч)

Алкены. Электронное и пространственное строение молекулы этилена. Гомологический ряд и изомерия алкенов (углеродного скелета, геометрическая или *цис-транс*-изомерия, положения двойной связи, межклассовая). Номенклатура алкенов.

Промышленные способы получения алкенов: крекинг алканов, входящих в состав нефти и попутного нефтяного газа, дегидрирование предельных углеводородов.

Лабораторные способы получения алкенов: реакции элиминирования (дегалогенирование), дегидратация дегалогенирование спиртов И дигалогеналканов, также дегидрогалогенирование галогенопроизводных a предельных углеводородов. Правило Зайцева.

Физические свойства алкенов.

Взаимное влияние атомов в органических молекулах. Мезомерный эффект.

Прогноз реакционной способности алкенов. Механизм реакций электрофильного присоединения.

Реакции присоединения алкенов: галогенирование, гидрирование, гидрогалогенирование, гидратация, полимеризация. Правило Марковникова. Реакции окисления алкенов КМпО4 (реакция Вагнера) в водной и сернокислой среде. Применение алкенов на основе свойств.

Высокомолекулярные соединения. Строение полимеров: мономер, полимер, элементарное звено, степень полимеризации.

Линейные, разветвлённые и сетчатые (сшитые) полимеры. Стереорегулярные и нестереорегулярные полимеры.

Отношение полимеров к нагреванию: термопластичные и термореактивные полимеры.

Полимеры на основе этиленовых углеводородов и : полиэтилен, полипропилен, политетрафторэтилен и поливинилхлорид.

Алкадиены. Классификация диеновых углеводородов: изолированные, кумулированныеи сопряжённые.

Номенклатура и изомерия диеновых углеводородов (межклассовая, углеродного скелета, взаимного положения кратных связей, геометрическая).

Строение сопряжённых алкадиенов.

Способы получения алкадиенов: дегидрирование алканов, реакция Лебедева, дегидрогалогенирование дигалогеналканов.

Физические свойства диеновых углеводородов. Химические свойства диеновых углеводородов: реакции присоединения, окисления и полимеризации — и особенности их протекания. Нахождение в природе и применение алкадиенов. Терпены.

Эластомеры. Натуральный каучук, как продукт полимеризации изопрена. Синтетические каучуки: бутадиеновый каучук (СБК), дивиниловый, изопреновый, хлоропреновый, бутадиен-стирольный. Вулканизация каучуков: резины и эбонит.

Алкины. Электронное и пространственное строение молекулы ацетилена.

Гомологический ряд и изомерия алкинов (углеродного скелета, положения тройной связи, межклассовая). Номенклатура алкинов.

Способы получения алкинов: пиролиз метана (в том числе и окислительный пиролиз природного газа), карбидный метод, дегидрогалогенирование дигалогеналканов, взаимодействие солей ацетиленовых углеводородов (ацетиленидов) с галогеналканами.

Физические свойства ацетиленовых углеводородов. Химические свойства. Реакции присоединения (гидрирование, галогенирование, гидрогалогенирование, гидратация, тримеризация ацетилена). Реакция Кучерова и правило Эльтекова. Кислотные свойства алкинов. Ацетилениды. Окисление алкинов: раствором КМnO4 и горение.

Области применения ацетилена на основе его свойств. Применение гомологов ацетилена. Полимеры на основе ацетилена. Винилацетилен.

Демонстрации. Объёмные модели *цис-*, *транс-*изомеров алкенов. Получение этилена из этанола и доказательство его непредельного строения (реакции с бромной водой и раствором КМпО4). Обесцвечивание этиленом бромной воды и раствора перманганата калия. Горение этилена. Взаимодействие алканов и алкенов с концентрированной серной кислотой. Модели молекул алкадиенов с изолированными, кумулированными и сопряжёнными двойными связями. Коагуляция млечного сока каучуконосов (молочая, одуванчика или фикуса). Деполимеризация каучука и доказательство наличия двойных связей в молекулах мономеров (реакции с бромной водой и раствором КМпО4). Ознакомление с коллекцией «Каучуки и резины». Получение ацетилена из карбида кальция. Объёмные модели алкинов. Взаимодействие ацетилена с бромной водой. Взаимодействие ацетилена с бромной водой.

Лабораторные опыты. Ознакомление с коллекцией полимерных образцов пластмасс и волокон.

Практическая работа 2.Получение метана и этилена и исследование их свойств.

ТЕМА 4.АРОМАТИЧЕСКИЕУГЛЕВОДОРОДЫ (7 ч)

Арены. Первые сведения об ароматических соединениях. Строение молекулы бензола: единая

—-электронная система, или ароматический секстет.

Гомологический ряд. Изомерия взаимного расположения заместителей в бензольном кольце. Номенклатура аренов. Ксилолы.

Промышленные способы получения бензола и его гомологов: ароматизация алканов и циклоалканов, тримеризация ацетилена (реакция Зелинского).

Лабораторные способы получения аренов: алкилирование бензола, пиролиз солей ароматических кислот.

Физические свойства аренов. Прогноз реакционной способности аренов. Реакции электрофильного замещения и их механизм: галогенирование, алкилирование (реакция Фриделя—Крафтса), нитрование, сульфирование.

Реакции присоединения: гидрирование, радикальное галогенирование. Реакции окисления.

Толуол, как гомолог бензола. Особенности химических свойств алкилбензолов. Ориентанты первого и второго рода. Взаимное влияние атомов в молекулах

алкилбензолов на примере реакции замещения. Реакции окисления. Применение аренов наоснове их свойств.

Демонстрации. Шаростержневые и объёмные модели бензола и его гомологов. Растворение в бензоле различных органических и неорганических веществ (например, серы, иода). Ознакомление с физическими свойствами бензола (растворимость в воде, плотность, температура плавления — выдерживание запаянной ампулы с бензолом в бане со льдом). Горение бензола на стеклянной палочке. Отношение бензола к бромной воде и раствору КМпО4. Нитрование бензола. Отношение толуола к воде. Растворение в толуоле различных органических и неорганических веществ (например, серы, иода). Обесцвечивание толуолом раствора КМпО4 и бромной воды.

ТЕМА 5. ПРИРОДНЫЕ ИСТОЧНИКИ УГЛЕВОДОРОДОВ (5 ч)

Природный гази попутный нефтяной газ. Природный газ и его состав. Промышленное использование и переработка природного газа.

Попутные нефтяные газы и их переработка. Фракции попутного нефтяного газа: газовый бензин, пропан-бутановая смесь и сухой газ.

Нефть. Нефть, как природный источник углеводородов, её состав и физические свойства.

Углеводороды как предмет международного сотрудничества и важнейшая отрасль экономики России.

Промышленная переработка нефти. Ректификация (фракционная перегонка). Фракции нефти: бензиновая, лигроиновая, керосиновая, газойль, мазут. Соляровые масла. Вазелин. Парафин. Гудрон. Крекинг нефтепродуктов: термический, каталитический, гидрокрекинг. Риформинг. Циклизация. Ароматизация. Детонационная стойкость бензина. Октановоечисло.

Каменный уголь. Промышленная переработка каменного угля. Нахождение вприроде и состав углей: каменный уголь, антрацит, бурый уголь.

Коксование и его продукты: кокс, каменноугольная смола, надсмольная вода, коксовый газ. Газификация угля. Водяной газ. Каталитическое гидрирование угля.

ТЕМА 6. ГИДРОКСИЛСОДЕРЖАЩИЕ ОРГАНИЧЕСКИЕ ВЕЩЕСТВА (11 ч) Спирты. Понятие о спиртах, история их изучения. Функциональная гидроксильная группа.

Классификация спиртов: по типу углеводородного радикала (предельные, непредельные, ароматические), по числу гидроксильных групп в молекуле (одно- и многоатомные), по типу углеродного атома, связанного с гидроксильной группой (первичные, вторичные, третичные).

Электронное и пространственное строение молекул спиртов. Гомологический ряд предельных одноатомных спиртов. Изомерия (положения функциональной группы, углеродного скелета, межклассовая) и номенклатура алканолов.

Общие способы получения алканолов: гидратация алкенов, гидролиз галогеналканов, восстановление карбонильных соединений. Способы получения некоторых алканолов: метилового спирта — реакцией щелочного гидролиза хлорметана и из синтез-газа; этилового спирта — спиртовым брожением глюкозы и гидратацией этилена; пропанола- 1— восстановлением пропионового альдегида;

пропанола-2 — гидрированием ацетона и гидратацией пропилена.

Физические свойства спиртов. Водородная связь. Прогноз реакционной способности предельных одноатомных спиртов и его подтверждение при химических свойств спиртов: кислотные свойства, рассмотрении галогеноводородами, нуклеофильного межмолекулярная замещения c внутримолекулярная дегидратация (получение простых эфиров и алкенов), реакции дегидрирования, окисления и этерификации.

Низшие и высшие (жирные) спирты. Синтетические моющие средства (СМС). Области применения метанола на основе его свойств. Токсичность метанола. Области применения этилового спирта на основе его свойств. Алкоголизм как социальное явление и его профилактика.

Многоатомные спирты. Атомность спиртов. Гликоли и глицерины. Изомерия, номенклатура и получение многоатомных спиртов. Особенности химических свойствмногоатомных спиртов. Качественная реакция на многоатомные спирты.

Этиленгликоль и глицерин, как представители многоатомных спиртов. Их применение.

Фенолы. Состав и строение молекулы фенола. Атомность фенолов. Гомологический ряд, изомерия и номенклатура фенолов.

Способы получения фенола: из каменноугольной смолы, кумольный способ, из галогенаренов и методом щелочного плава.

Физические свойства фенолов. Химические свойства фенола: кислотные свойства, окисление, реакции электрофильного замещения (галогенирование, нитрование), поликонденсация.

Качественные реакции на фенол: с бромной водой и раствором хлорида железа(III). Применение фенолов.

Демонстрации. Шаростержневыемодели молекул одноатомных и многоатомных спиртов. Физические свойства этанола, пропанола-1, бутанола-1.Взаимодействие натрия со спиртом. Взаимодействиеспирта с раствором дихромата калия в серной кислоте. Получение сложного эфира. Получение этилена из этанола. Сравнение реакций горения этилового и пропилового спиртов. Обнаружение этилового спирта в различных продуктах с помощью иодоформной пробы. Взаимодействие глицерина со свежеосажденным Cu(OH)2. Распознавание водных растворов глицерина и этанола. Отношение этиленгликоля и глицерина к воде и органическим растворителям. Растворимость фенола в воде при обычной и повышенной температурах. Вытеснение фенола из фенолята натрия угольной кислотой. Качественные реакции на фенол: обесцвечивание бромной воды и с раствором FeCl3. Обесцвечивание фенола растворомКМnO4.

Практическая работа №3. Исследование свойств спиртов.

ТЕМА 7. АЛЬДЕГИДЫ И КЕТОНЫ (7 ч)

Альдегиды. Альдегиды как карбонильные органические соединения. Состав их молекул и электронное строение. Гомологический ряд, изомерия и номенклатура альдегидов.

Способы получения: окисление соответствующих спиртов, окисление углеводородов (Вакер-процесс), гидратация алкинов, пиролиз карбоновых кислот или их солей, щелочной гидролиз дигалогеналканов.

Физические свойства альдегидов. Прогноз реакционной способности альдегидов. Химические свойства: реакции присоединения (циановодорода, гидросульфита натрия, реактива Гриньяра, гидрирование), реакции окисления (серебряного зеркала и представители непредельных одноосновных карбоновых кислот. Олеиновая, линолевая и линоленовая, как представители высших непредельных одноосновных карбоновых кислот. Бензойная и салициловая, как представители ароматических карбоновых кислот. Двухосновные карбоновые кислоты на примере щавелевой. Применение и значение карбоновых кислот.

Соли карбоновых кислот. Мыла. Получение солей карбоновых кислот на основе общих свойств кислот: взаимодействием с активными металлами, основными оксидами, основаниями или солями. Получение солей карбоновых кислот щелочным гидролизом сложных эфиров. Химические свойства солей карбоновых кислот: гидролиз по катиону, реакции ионного обмена, пиролиз, электролиз водных растворов. Мыла. Жёсткость воды и способы её устранения. Применение солей карбоновых кислот.

Сложные эфиры. Строение молекул, номенклатура и изомерия сложных эфиров. Их физические свойства. Способы получения сложных эфиров: реакция этерификации, взаимодействие спиртов с ангидридами или галогенангидридами кислот реакцией поликонденсации на примере получения полиэтилентерефталата. Химические свойства сложных эфиров: гидролиз и горение. Применение сложных эфиров.

Воски и жиры. Воски, их строение, свойства и классификация: растительные и животные. Биологическая роль. Жиры, их строение и свойства: омыление, гидрирование растительных жиров. Биологическая роль жиров. Замена жиров в технике непищевым сырьём.

Демонстрации. Шаростержневые и Стюарта—Бриглеба модели альдегидов.

Окисление бензальдегида кислородом воздуха. Получение фенолформальдегидного полимера. Шаростержневые модели молекул карбоновых кислот. Таблица

«Классификация карбоновых кислот». Физические свойства этанола, пропанола-1, бутанола-1. Получение уксуно-изоамилового эфира. Коллекция органических кислот. Отношение предельных и непредельных кислот к бромной воде и раствору перманганата калия. Получение мыла из жира. Сравнение моющих свойств хозяйственного мыла и СМС в жёсткой воде. Коллекция сложных эфиров. Шаростержневые модели молекул сложных эфиров и изомерных им карбоновых кислот. Получение приятно пахнущего сложного эфира. Отношение сливочного, подсолнечного, машинного масел и маргарина к водным растворам брома и КМпО4.

Лабораторные опыты. Ознакомление с физическими свойствами некоторых предельных одноосновных кислот: муравьиной, уксусной, масляной. Отношение различных кислот к воде. Взаимодействие раствора уксусной кислоты: с металлом (Mg или Zn); оксидом металла (CuO); гидроксидом металла (Cu(OH)2 или Fe(OH)3), солью, (Na2CO3 и раствором мыла). Ознакомление с образцами сложных эфиров. Отношение сложных эфиров к воде и органическим веществам (красителям).Выведение жирного пятна с помощью сложного эфира. Растворимость жиров в воде и органических растворителях.

Практическая работа 5.Исследование свойств карбоновых кислот и их производных.

ТЕМА 9. УГЛЕВОДЫ (10 ч)

Электронное и пространственное строение молекул аминов. Гомологический ряд, изомерия и номенклатура предельных алифатических аминов. Гомологический ряд, изомерия и номенклатура ароматических аминов.

Способы получения алифатических аминов: взаимодействием аммиака со спиртами, взаимодействием галогеналканов с аммиаком, взаимодействием солей алкиламмония со щёлочами

Способы получения ароматических аминов: восстановлением ароматических нитросоединений (реакция Зинина), взаимодействием ароматических аминов с галеналканами.

Прогноз реакционной способности аминов на основе их электронного строения. свойства аминов, органических оснований. Реакции как электрофильного замешения ароматических Реакшии аминов. окисления. алкилирования. Образование амидов. Взаимодействие аминов с азотистой кислотой. Применение аминов на основе свойств.

Аминокислоты. Понятие об аминокислотах. Строение молекул и номенклатура аминокислот.

Способы получения аминокислот: гидролиз белков, синтез на основе галогенопроизводных карбоновых кислот, циангидринный синтез, биотехнологический способ.

Физические свойства аминокислот. Аминокислоты как амфотерные органические соединения: взаимодействие с кислотами и щелочами, образование биполярного иона. Реакции этерификации и конденсации.

Пептидная связь и полипептиды. Качественные реакции на аминокислоты: нинигидриновая и ксантопротеинования. Применение аминокислот и биологическая роль пептидов.

Белки.Структуры молекул белков: первичная, вторичная, третичная, четвертичная. Синтез белков.Свойства белков: денатурация, гидролиз, качественные реакции. Биологические функции белков.

Лабораторные опыты. Изготовление шаростержневых моделей молекул изомерных аминов. Изготовление моделей простейших пептидов. Растворение белков в воде и их коагуляция. Обнаружение белка в курином яйце и молоке.

Практическая работа7. Амины. Аминокислоты. Белки.

Практическая работа 8. Идентификация органических соединений.

11 класс

Тема 1. Важнейшие законы и понятия химии. (6 часов)

Знать: определение закона сохранения массы веществ и закона постоянства состава, их практическое значение. Иметь представление о веществах постоянного и переменного состава.

Знать о взаимосвязи закона сохранения массы веществ и закона сохранения и превращения энергии.

Уметь: разграничивать понятие «химический элемент» и «простое вещество»., проводить самостоятельный поиск химической информации; использовать приобретенные знания для критической оценки достоверности химической информации, поступающей из разных источников.

Тема 2. Периодический закон и периодическая система химических элементов Д. И. Менделеева на основе строения атома. (8часов).

Знать: Атом. Изотопы. Атомные орбитали. Электронная классификация элементов (s-, p- элементы). Особенности строения электронных оболочек атомов переходных элементов. Периодический закон и периодическая система химических элементов Д.И.Менделеева, их мировоззренческое и научное значение, основные химические понятия: вещество, химический элемент, атом, молекула, относительная атомная и молекулярная масса, ион, изотоп, периодический закон.

Уметь:

называть: вещества по "тривиальной" и международной номенклатуре. определять: заряд иона.

характеризовать: элементы малых периодов по их положению в ПС.

проводить: самостоятельный поиск химической информации с использованием различных источников.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни.

Тема 3. Строение вещества. (13 часов)

Знать:

Ковалентная связь, ее разновидности и механизмы образования. Степень окисления и валентность химических элементов. Ионная связь. Катионы и анионы. Металлическая связь. Водородная связь. Единая природа химических связей. Качественный и количественный состав вещества. Вещества молекулярного и немолекулярного строения. Кристаллические решетки. Чистые вещества и смеси. Способы разделения смесей и их использование.

Уметь:

называть: вещества по "тривиальной" и международной номенклатуре.

определять: тип химической связи в соединениях.

объяснять: природу химической связи (ионной, ковалентной, металлической).

проводить: самостоятельный поиск химической информации с использованием различных источников.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни.

Демонстрации: таблицы, модели, «Химическая связь» и «Строение неорганических веществ», модели кристаллических решеток.

Практическая работа № 1 «Приготовление растворов с заданной молярной

концентрацией»

Контрольная работа по теме «Строение вещества»

Тема 4. Химические реакции. (22 часов)

Знать: Классификация химических реакций в неорганической и органической химии по различным признакам. Особенности реакций в органической химии.

Реакции ионного обмена в водных растворах. Гидролиз неорганических и органических соединений. Среда водных растворов: кислая, нейтральная, щелочная. Водородный показатель (рН) раствора. Истинные растворы. Способы выражения концентрации растворов: массовая доля растворенного вещества. Диссоциация электролитов в водных растворах. Сильные и слабые электролиты. Понятие о коллоидах и их значение (золи, гели). Тепловой эффект химической реакции. Окислительно-восстановительные реакции. Скорость реакции, ее зависимость от различных факторов. Катализаторы и катализ. Представление о ферментах, как биологических катализаторах белковой природы.

Обратимость реакций. Химическое равновесие и способы его смещения.

Уметь:

называть: вещества по "тривиальной" и международной номенклатуре. определять: характер среды в водных растворах, окислитель, восстановитель.

объяснять: зависимость скорости химических реакций и положения химического равновесия от различных факторов.

проводить: самостоятельный поиск химической информации с использованием различных источников.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для объяснения хим. явлений, происходящих в быту и на производстве и для экологически грамотного поведения в окружающей среде, а также для оценки влияния хим. загрязнения окружающей среды на организм человека и другие живые организмы, для охраны окружающей среды от промышленных отходов.

Демонстрации: реакции экзо- и эндотермические; к/фильм «Химические реакции неорганических веществ», влияние на скорость химической реакции: а)концентрации, б) поверхности их соприкосновения, в) температуры; г) катализатора.. Влияние температуры на смещение химического равновесия при окислении оксида азота (П) в оксид азота (IV) кислородом; Каталитическое разложение пероксида водорода в присутствии ионов меди или каталазы. Электропроводность твёрдых, жидких в-в, растворов с различными видами связи, химических реакций гидролиза солей разных типов

Практическая работа № 2 «Влияние различных факторов на скорость химической реакции»

Практическая работа № 3. Решение экспериментальных задач.

Контрольная работа № 2 по теме «Химические реакции»

Тема 5. Металлы. (24 часов)

Знать: характеристику металлов как химических элементов по положению в периодической системе и строении атома и как простых веществ (по типу связи и кристаллической решетки). Строение атомов химических элементов - металлов, образующих главные и побочные подгруппы периодической системы Д. И. Менделеева (П - IV периоды). Зависимость свойств металлов от строения их кристаллических решеток. Общие физические и химические свойства простых веществ металлов. Соединения металлов, изменение состава кислотно-основных свойств оксидов и гидроксидов химических элементов побочных подгрупп периодической системы Д. И. Менделеева (на примере соединений хрома). Применение металлов и сплавов в народном хозяйстве, общие способы получения металлов, особенности производства некоторых из них в промышленности.

Уметь:

называть: вещества по "тривиальной" и международной номенклатуре.

определять: принадлежность веществ к различным классам.

характеризовать: общие химические свойства металлов

выполнять химический эксперимент: по получению соединений металлов и расчета возможного выхода продукта реакции.

проводить: самостоятельный поиск химической информации с использованием различных источников.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для объяснения хим. явлений, происходящих в быту и на производстве и для экологически грамотного поведения в окружающей среде, а также для оценки влияния хим. загрязнения окружающей среды на организм человека и другие живые организмы, для охраны окружающей среды от промышленных отходов.

Демонстрации: образцы металлов, видеодемонстрации электролиза, химических свойств металлов.

Практическая работа № 4 « Решение экспериментальных задач по теме Металлы»

Практическая работа № 5 « Решение практических расчетных задач на возможный выход продукта реакции»

Контрольная работа № 3 по теме «Металлы»

Тема 6. Неметаллы. (29 часов)

Знать: Неметаллы. Окислительно-восстановительные свойства типичных неметаллов (на примере водорода, кислорода, галогенов и серы). Общая характеристика подгруппы галогенов (от фтора до иода), углерода, азота, кислорода. Благородные газы. Соединения неметаллов, Серная, азотная кислоты.

Уметь:

называть: вещества по «тривиальной» и международной номенклатуре. определять: принадлежность веществ к различным классам.

характеризовать: общие химические свойства неметаллов выполнять химический эксперимент: по получению газов.

проводить: самостоятельный поиск химической информации с использованием различных источников.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для объяснения хим. явлений, происходящих в быту и на производстве и для экологически грамотного поведения в окружающей среде, а также для оценки влияния хим. загрязнения окружающей среды на организм человека и другие живые организмы, для охраны окружающей среды от промышленных отходов.

Демонстрации: образцы неметаллов, соединений неметаллов, видеофрагменты о химических свойствах неметаллов.

Практическая работа № 6 «Решение экспериментальных задач по теме Неметаллы»

Контрольная работа № 4 по теме «Неметаллы»

Итоговая контрольная работа по курсу химии.

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «ШКОЛА № 155» ГОРОДСКОГО ОКРУГА САМАРА (МБОУ Школа № 155 г.о. Самара)

PACCMOTPEHO	ПРОВЕРЕНО	УТВЕРЖДАЮ
на заседании методического	Заместитель	Директор
объединения	директора по учебно-	МБОУ Школы № 155
(протокол № 1	воспитательной работе	г.о. Самара
от 16.06.2023)		
Председатель МО	Е.А. Дьяченко	О.А. Михайлова
	-0.00	
Е.А. Дьяченко	28.08.2023	28.08.2023

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

на 2023-2024 учебный год

ПРЕДМЕТ: Химия (углубленный уроыень)

Ф.И.О. УЧИТЕЛЯ: Кучканова Валентина Владимировна

КЛАССЫ: 11 класс

КОЛИЧЕСТВО ЧАСОВ ВСЕГО: 102 часа

КОЛИЧЕСТВО ЧАСОВ В НЕДЕЛЮ: 3 часа

NC-		T.C	h r.
№	Наименование разделов и тем	Количество часов	Примечание
I	талменование разделов и тем	1	I
	Тема 1. ВАЖНЕЙШИЕ ПОНЯТИЯ И ЗАКОНЫ	ХИМИИ (6ча	асов)
1	Химический элемент. Изотопы. (ВР)	1	
2	Закон сохранения массы веществ . (ВР)	1	
3	Закон сохранения и превращения энергии. (ВР)	1	
4	Закон постоянства состава веществ (ВР)	1	
5	Классы неорганических соединений. (ВР)	1	
6	Основные типы решения расчетных задач. (ВР)	1	
	Тема 2. ПЕРИОДИЧЕСКИЙ ЗА КОН И ПЕРИОДИЧЕСКАЯ СИС ЕМЕНТОВ Д. И. МЕНДЕЛЕЕВА НА ОСНОВЕ УЧЕНИЯ О СТРОБ		
7 – 9	Особенности размещения электронов в атомах малых и больших периодов. (BP)	2	
10	Положение в периодической системе лантаноидов, актиноидов, водорода, искусственно полученных элементов. (ВР)	1	
11	Валентность и валентные возможности атомов. (ВР)	1 1	
12	Решение задач и упражнений по теме «Валентность и валентные возможности атомов» (ВР)	1	<u> </u>
13	Оксиды, гидроксиды, водородные соединения химических элементов, изменение их свойств в периодах и в группах. (ВР)	1	
14	Обобщающий урок по теме «Периодический закон и Периодическая система Д. И. Менделеева» (ВР)	1	C.p.
	Тема 3. СТРОЕНИЕ ВЕЩЕСТВА (13 часо	OB)	
15	Основные типы химической связи. Ионная связь. (ВР)	1	
16	Основные типы химической связи. Ковалентная неполярная связь. (ВР)	1	
17	Основные типы химической связи. Ковалентная полярная связь. (ВР)	1	
18	Основные типы химической связи. Металлическая связь. (ВР)	1	
19	Основные типы химической связи. Водородная связь. (ВР)	1	
20	Пространственное строение молекул веществ. (ВР)	1	
21	Кристаллические решетки. (ВР)	1	
22	Причины многообразия веществ. (ВР)	1	
23	Дисперсные системы. Молярность растворов. (ВР)	1	
24	Решение задач. (ВР)	1	

25	Обобщение по теме «Строение вещества». (BP)	1	
26	Практическая работа № 1 «Приготовление растворов с заданной молярной концентрацией» (BP)	1	Практическая работа № 1
27	Контрольная работа № 1 по теме «Строение вещества» (BP)	1	Контрольная работа № 1
	Тема 4. ХИМИЧЕСКИЕ РЕАКЦИИ (22часа)	
28-30	Классификация химических реакций. (ВР)	2	
31-32	Окислительно-восстановительные реакции. (ВР)	2	
33	Решение задач и упражнений по теме «Окислительно-восстановительные реакции». (BP)	1	C.p.
34	Скорость химических реакций. Катализ. (ВР)	1	
35	Практическая работа № 2 «Влияние различных факторов на скорость химической реакции» (BP)	1	Практическая работа № 2
36	Химическое равновесие. Условия, влияющие на смещение химического равновесия (принцип Ле-Шателье). (ВР)	1	L
37	Решение задач по теме «Химическое равновесие. Условия, влияющие на смещение химического равновесия». (ВР)	1	C.p.
38	Производство серной кислоты контактным способом. (ВР)	1	1
39	Электролиты и неэлектролиты. Электролитическая диссоциация. (ВР)	1	
40	Сильные и слабые электролиты. Степень и константа диссоциации. (ВР)	1	
41	Решение задач по теме «Сильные и слабые электролиты. Степень и константа диссоциации». (ВР)	1	C.p.
42	Реакции ионного обмена. Водородный показатель растворов. (ВР)	1	
43	Решение ионных уравнений. (ВР)	1	
44	Гидролиз органических и неорганических соединений. (ВР)	1	
45	Решение расчетных задач. (ВР)	1	C.p.
46	Практическая работа № 3. Решение экспериментальных задач. (BP)	1	Практическая работа № 3
47	Обобщающий урок по теме «Химические реакции» (ВР)	1	
48	Подготовка к контрольной работе. (ВР)	1	C.p
49	Контрольная работа № 2 по теме «Химические реакции» (BP)	1	Контрольная работа № 2
	Тема 5. МЕТАЛЛЫ. (24 часа)		•
50	Металлы. (ВР)	1	
51-52	Общие способы получения металлов. Электролиз. (ВР)	2	
53	Коррозия металлов. (ВР)	1	
54	Общий обзор металлических элементов А – групп. (ВР)	1	
55 56	Элементы главной подгруппы I группы. (BP)	1	
56 57	Элементы главной подгруппы II группы. (BP) Элементы главной подгруппы III группы. (BP)	1 1	
58	Семинар по теме «Общий обзор металлических элементов А – групп»	1	

	(BP)		
59	Общий обзор металлических элементов Б – групп. (ВР)	1	
60	Медь (ВР)	1	
62	Цинк (ВР)	1	
63	Титан (ВР)	1	
64	Хром. (BP)	1	
65	Железо. Никель. Платина (ВР)	1	
66	Сплавы металлов. (ВР)	1	
67	Оксиды и гидроксиды металлов. (ВР)	1	
68	Практическая работа № 4 « Решение экспериментальных задач по	1	Практическая
	теме Металлы» (BP)		работа № 4
69	Практическая работа № 5 « Решение практических расчетных	1	Практическая
	задач на возможный выход продукта реакции» (BP)		работа № 5
70	Решение задач по теме «Металлы» (BP)	1	
71	Обобщающий урок по теме «Металлы» (BP)	1	
72	Подготовка к контрольной работе. (ВР)	1	
73	Контрольная работа № 3 по теме «Металлы» (BP)	1	Контрольная работа № 3
	Тема 6. НЕМЕТАЛЛЫ (29 часов)		
74	Обзор неметаллов. (ВР)	1	
75	Элементы главной подгруппы IV группы. (BP)	1	
76	Элементы главной подгруппы V группы. (BP)	1	
77	Элементы главной подгруппы VI группы. (BP)	1	
78	Элементы главной подгруппы VII группы. (BP)	1	
79	Элементы главной подгруппы VIII группы. (BP)	1	
80	Решение задач и упражнений по теме «Элементы главных подгрупп». (BP)	1	C.p
81-82	Оксиды неметаллов и кислородсодержащие кислоты. (ВР)	2	
83	Серная кислота и ее свойства. (ВР)	1	
84	Азотная кислота и ее свойства. (ВР)	1	
85	Семинар по теме «Общий обзор неметаллических элементов A – групп». (BP)	1	
86	Водородные соединения неметаллов. (ВР)	1	
87	Генетическая связь органических и неорганических веществ. (ВР)	1	
88	Решение упражнений по теме «Генетическая связь органических и неорганических веществ». (ВР)	1	C.p
89-90	Бытовая химическая грамотность (ВР)	2	
91-92	Решение задач и упражнений по теме «Неметаллы». (BP)	2	C.p.
93	Практическая работа № 6 «Решение экспериментальных задач по теме Неметаллы». (BP)	1	Практическая работа № 6
94	Обобщающий урок по теме «Неметаллы». (ВР)	1	,
95	Подготовка к контрольной работе. (ВР)	1	C.p.
96	Контрольная работа № 4 по теме «Неметаллы». (BP)	1	Контрольная работа № 4
98-99	Решение расчетных задач по курсу химии. (ВР)	2	C.p.
100	Подготовка к итоговой контрольной работы. (ВР)	1	1 1
101	Итоговая контрольная работа по курсу химии. (ВР)	1	Итоговая
			контрольная
			работа